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Abstract— General-purpose robots must possess human-like
dexterity and agility to match the versatility of humans. A
human-like form factor further enables leveraging the wealth
of data available from human hand interactions. However, the
bottleneck in dexterous manipulation lies not only in software
but arguably even more in hardware. Robotic hands matching
human capabilities are often prohibitively expensive, bulky, or
require enterprise-level maintenance, making them inaccessible
for broader research and applications. What if the research
community could get started with reliable dexterous hands
within a day? We present the ORCA hand, a 17-DoF tendon-
driven robotic hand with fully integrated tactile sensors that
can be assembled in under 8 hours and has a BOM of $2k.
We showcase design features such as popping joints, auto-
calibration, and tensioning systems that significantly reduce
complexity while increasing reliability, accuracy, and robust-
ness. We benchmark the ORCA hand across a variety of
tasks, ranging from teleoperation and imitation learning to
zero-shot sim-to-real reinforcement learning. Furthermore, we
demonstrate that our hand is capable of withstanding over 10k
cycles, or approximately 20 hours of continuous operation. CAD
files, source code, and documentation will be made available at
orcahand.com.

I. INTRODUCTION

Reproducing the intricate dexterity of the human hand has
long been a central challenge in robotics [1], [2]. While
robotic grippers excel in industrial automation, their limited
versatility makes them unsuitable for interacting with tools
and objects designed for human hands [3], [4]. Consequently,
extensive research has been devoted to developing anthropo-
morphic robotic hands and training them to solve complex
manipulation tasks [5], [6]. However, compared to grippers,
anthropomorphic hands require significantly more actuators,
increasing complexity in their assembly and control. Ad-
ditionally, good anthropomorphic hand hardware must be
durable, repeatable, and versatile to be used in machine
learning applications. Whether it is the sim2real gap in
reinforcement learning (RL) or teleoperation accuracy in
imitation learning (IL), bottlenecks in dexterous manipula-
tion stem not only from software but also, and maybe more
importantly, from hardware limitations [7], [8].

Existing tendon-driven robotic hands, such as the Shadow
Hand [10], have demonstrated impressive capabilities in
dexterous manipulation tasks [11]. However, these hands
cost over $100,000 USD, require substantial maintenance
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Fig. 1: (A) The ORCA hand closely mimics its human counterpart with
the same form factor, a bony structure, and silicone-cast skin. The ORCA
hand is 3D printed but incorporates joints designed to pop before breaking,
making it resistant to overload breaks while retaining the advantages of
bearing pinhole joints, such as stability and simple kinematics. (A1) Just
before the joint pops. (A2) Applying pressure pops it into place and keeps
it secure. (A3) depicts our spool system, which enables manual retention
without unscrewing the spools or tendons. (B) We show that our hand can
be deployed in real-world settings by running our self-resetting imitation
learning policy for over 7 hours. (C) Our reliability test reveals our hand’s
robustness and the high repeatability of joint movements.

[12] and are difficult to repair due to their proprietary and
highly integrated designs. Other tendon-driven hands, such
as the InMoov hand [13] and the DexHand [14], offer
advantages in being open-source and low-cost. However, the
InMoov hand is limited in dexterity, while the DexHand
is challenging to assemble, and neither has demonstrated
real-world applicability in autonomous manipulation tasks.
Alternatives to tendon-driven hands are direct-driven hands,
such as the Allegro Hand [15], priced at around $15,000,
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Fig. 2: Versatility of the ORCA hand: (A)-(D) Teleoperation with ROKOKO [9] gloves. (A) Holding a pen (B) Using a drill, showing high dexterity. (C)
Liquid pouring. (D) Grasping a cube: This picture illustrates how closely the ORCA hand resembles a human hand. (E) IL with walls and a slider for
self-resetting. (F) Policies in simulation, such as rolling a ball, can be deployed zero-shot to the real world due to the ORCA hand’s low joint errors.

and the LEAP hand [16], where the latter is an open-source,
cost-effective solution (about $2,000) that requires only three
hours of assembly and provides unprecedented reliability.
Nonetheless, all direct-driven hand designs share limitations
such as bulkiness, restricted form factors, and an inability
to match the softness and agility of a human hand. In fact,
placing motors within the fingers creates inertia issues, which
prevents the quick and dynamic movements that are essential
for human-like motion.

In this paper, we present the ORCA hand: a tendon-
driven, dexterous, and anthropomorphic robotic hand with
fully integrated tactile sensors. The ORCA hand is designed
for reliability, simplicity, and versatility across a wide range
of tasks. Key contributions of our integrated system include:

• An open-source, 3D-printable design with a cost of less
than $2000, which can be assembled by a single person
without prior experience in under 8 hours.

• A joint design that pops before it breaks, enhancing the
durability of 3D-printed components and streamlining
the assembly process.

• Auto-calibration enabled by tendon routing through the
center of rotation. This minimizes joint position errors
and increases repeatability.

• Fully integrated tactile sensors and sensor wiring, which
can be produced in-house, offering a compact and
modular solution.

We demonstrate the hand’s dexterity by teleoperating it
to perform complex tasks that traditional robotic grippers
cannot accomplish. Through a variety of reliability tests we
demonstrate the ORCA hand’s capability to offer exceptional
reliability, durability and consistent performance during tens
of hours of operation. To showcase the ORCA hand’s dexter-
ity and accuracy we implement fine motor control tasks like
in-hand object orientation. Leveraging the anthropomorphic
design we are also able to implement imitation learning tasks
like the picking and placement of cubes and execute these
autonomous tasks continuously for multiple hours without
any human intervention on the hand hardware.

II. SYSTEM DESIGN

The ORCA hand design follows the requirements set
above, namely dexterity and reliability at a low cost and low
complexity. It comprises five fingers, including an opposable
thumb and an actuated wrist (Fig. 1A), and is similar in size
to an average human hand [17]. The fingers are mounted
on a base that resembles the human palm containing the
carpal and metacarpal bones. The palm is connected to
the wrist mechanism which is mounted on the tower. The
tower contains the motors and all auxiliary electronics, and
is enclosed in a protective casing. The rest of this chapter
describes the most important design features of the ORCA
hand in detail.

A. Tendon Actuation for Agility

Each joint, except for the wrist joint, is actuated using
two fishing lines (Nylon fibers braided into a 1 mm diam-
eter rope) under tension, here referred to as tendons. One
tendon is responsible for flexion (flexor), and the other for
extension (extensor). This decision was made based on the
fact that a smaller form factor and lower finger inertia more
closely mimic the nimbleness and dexterity of human hands
compared to direct-driven hands. Moreover, tendon actuation
makes the ORCA hand independent of the choice of actuator,
enabling actuation technologies other than electric motors to
be used in the future, such as artificial muscles.

While tendon actuation offers many advantages, it also
presents challenges such as friction buildup, wear, and
slack over time, which can affect movement precision and
longevity. We mitigate those challenges as follows:

• We avoid direct contact of tendons with PLA by deflect-
ing the tendons around smooth metal pins and rods, as
depicted in Fig. 3C.

• We use Teflon tubes for non-linear routing, e.g. from
the bottom of the thumb to the wrist.

• Finally, tendons can be manually re-tensioned using
a ratchet spool mechanism mounted on the motors,
as shown in Fig. 1A3. The ratchet is attached to the
top spool, allowing rotation in one direction while
locking movement in the other. This design makes the
ORCA hand user-friendly, as re-tensioning can be done
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Fig. 3: (A) Naming convention of the joints. The thumb includes an
additional degree of freedom. (B) Auto-calibration: The three-step process
moves all joints to their respective limits and determines a mapping between
motor and joint angles without any external sensors. (C) Routing of the
DIP joint. The tendons are guided around metal pins, to reduce friction and
eliminate wear over time. Moreover, they always are guided through the
center of rotation for straightforward control.

in seconds without the need to unscrew the spool or
tendon. The spool system quickly eliminates any slack
that accumulates. Additionally, the tendons can be easily
loosened, allowing joints to be popped out for quick
replacement of broken parts.

B. Poppable Pin Joints

Rolling contact joints [18], [14] have become a popular
alternative to pinhole joints for 3D-printed hands due to
their ability to dislocate instead of breaking. However, these
mechanisms require ligaments, which can loosen over time
and increase complexity. We introduce a pin joint design that
allows them to "pop" out of place and dislocate instead of
breaking when excessive radial and axial loads are applied
(Fig. 1A1). This is achieved by placing the bearings in
circular arc-shaped grooves, which hold them tightly under
normal operating conditions but allow them to dislocate
in the event of a collision. This mechanism combines the
advantages of pinhole joints, such as axial stability and
straightforward kinematics, with the robustness of ligament-
based rolling contact joints, while being extremely quick and
easy to assemble.

C. Finger and Palm Design

Fingers two to five (index to pinky) have three actuated
joints that mimic those of the human finger: the Proximal
Interphalangeal (PIP), the Metacarpophalangeal (MCP) and
the Abduction (ABD) joint (Fig. 3A). The ORCA PIP joint
corresponds to the human PIP joint, while the MCP and ABD

joints together correspond to the human MCP joint which
can perform both flexion/extension and abduction/adduction,
which is necessary in various dexterous manipulation tasks
[19]. The range of motion (RoM) for each joint is shown in
Table I, based on the human anatomy [17].

Joint Name Fingers 2 to 5 Thumb

Flexion Extension Flexion Extension

IP - - 100° 20°
PIP 130° 20° - -
MCP 110° 20° 115° 20°
ABD 30° 30° 45° 45°
CMC - - 48° 53°

TABLE I: Range of motion of joints of ORCA hand.

Omitting the DIP joint on fingers two to five was an
intentional choice with the benefits of greatly simplifying
assembly and reliability. The DIP joint is not directly actu-
ated in the human hand, and as such it is of less importance
compared to the other hand joints in dexterous manipulation
tasks. A positive side-effect of the removal of the DIP joint
is the significant increase in the space available for tactile
sensing integration on the fingertips.

The thumb differs from other fingers and has four instead
of three DoFs, i.e. four joints, the Interphalangeal (IP), MCP,
ABD and Carpometacarpal (CMC) joint. Additionally, it is
placed on the palm in an opposable manner to other fingers
with a supination of 15° [17].

D. Wrist Design

One of the biggest limitations of hands missing the wrist
joint is that the palm cannot be oriented parallel to a surface,
such as a table, because the robotic arm would block the way.
This significantly reduces grasping performance. Motivated
by this, we added one rotational DoF around the transverse
(radioulnar) axis of the hand. The human wrist can flex and
extend about 80° [17], while the ORCA wrist mechanism
is capable of achieving 60° of flexion/extension. Instead of
using tendon actuation at the wrist, we opted for belt drive
to account for the increased loads the wrist experiences. We
use a standard GT2 timing belt with fiberglass reinforce-
ment, which exhibits negligible slack buildup over time. We
decided not to add a second DoF at the wrist to represent the
radial/ulnar deviation of the human wrist, in order to avoid
unnecessary complexity and increased cost, since the human
wrist is significantly limited in this type of motion compared
to flexion/extension [17].

E. Integrated tactile sensing

Many works have also focused on enhancing the ma-
nipulation abilities of robotic hands by integrating tactile
sensors, particularly on the fingertips. These sensors include
force sensors [20], [21], piezoresistive pressure sensors [22],
capacitive pressure sensors [23], and Hall effect-based sen-
sors [24]. In the ORCA hand, we utilize Force Sensing
Resistors (FSR) (RP-C7.6-ST Thin-Film Pressure Sensor)
mounted onto a solid FDM-printed PLA backplate, and



covered by silicone-molded skin, to provide us with binary
tactile feedback on all five fingertips. While FSR sensors are
in theory capable of providing feedback on the magnitude
of applied force, a binary interpretation was chosen due
to the compliant skin, combined with its irregular surface,
dampening external forces to a different degree depending
on the location on the fingertip where the force is applied.
As such, the force magnitude cannot be estimated without ad-
ditional information about the location of indentation, which
the FSR sensors by themselves are incapable of providing.
All sensors are connected to the external electronics through
thin copper wires (∅ 0.2mm), which are routed through
the internal finger and palm structure through PTFE tubing,
to protect them from the environment and external forces,
while furthermore providing a clean visual appearance. To
read the output of the FSR sensors, each sensor forms a
voltage-divider with a 10kΩ resistor, the three nodes of
which are connected to a 5V input, an analog input, and
ground respectively, all provided by an Arduino Nano Every.

F. Self-Calibration for Accurate Control

In machine learning settings, such as data collection for
imitation learning, consistency in recordings is critical. If
there is high variance in the gap between human teleopera-
tion and the robotic hand across different runs, it becomes
more difficult for policies to accurately imitate the human
[25]. Moreover, this consistency is not only crucial during
data collection but also during policy deployment. Any offset
between the training data and the deployed system can
result in poor policy performance, as the learned model may
fail to generalize effectively to scenarios with mismatched
conditions. This is especially important when attempting to
reduce the sim-to-real gap. While it is possible to ensure
reliable control consistency using proprioception sensors, as
demonstrated in [10], this adds significant cost and complex-
ity. We therefore propose an alternative, more cost-effective
approach:

Let θi be the true angle, θ̃i the commanded angle of joint
i, ∀i ∈ {1, . . . , 17}, and ϕi the motor’s angular displacement
for the same joint. The ideal goal is to always have θi = θ̃i.
However, in practice, especially with tendon-driven hands,
there is a discrepancy because motor-to-joint mapping relies
on a model where:

θi = θ̃i + ϵ(rj , rm, s, d,m)

=f(ϕ1, . . . , ϕ17) + ϵ(rj , rm, s, d,m)

where f(ϕ1, . . . , ϕ17) is generally non-linear, and ϵ repre-
sents model errors including tendon radius of joint and motor
(rj , rm), built-up slack s, servo drift d and measurement
errors m in case of manual calibration which can introduce
substantial offsets.

Referring to the routing of the ORCA hand, as depicted
in Fig. 3, each tendon passes through or near the center
of rotation (CoR). This design ensures that joint positions
are approximately decoupled and can be actuated linearly
and independently. Due to the system’s linearity and our
focus on controlling the motor angles ϕi, we can express the

desired angles as θ̃i = R′
i ·ϕi, with R′

i ∈ R+. Consequently,
the relationship between the actual angles θi and the motor
angles yields

θi = R′
i · ϕi + ϵ(rM , rJ , s, l, d).

Since we can directly control the motor angles, we define ϕi

in terms of θ̃i as ϕi =
1
R′

i
· θ̃i = Ri · θ̃i. To determine Ri,

we use a procedure referred to as auto-calibration, which
estimates Ri and minimizes the error terms. The process is
visually depicted in Fig. 3B and works as follows:

1. Let |RoMi| denote the absolute range of motion of
joint i. Using CAD models, the angular distance between
the physical stops of each joint is precisely determined,
providing |RoMi| with minimal uncertainty. 2. During cali-
bration, each joint i is moved to its extreme mechanical limits
(fully flexed ϕi,max , fully extended ϕi,min). 3. The total servo
rotation over the joint’s range of motion is computed as:

∆ϕi = ϕi,max − ϕi,min.

4. The joint-to-motor transmission ratio is then calculated
using linear interpolation:

Ri =
∆ϕi

|RoMi|
.

and thus we get

θi =
1

Ri
· ϕi + ϵ(|RoMi|, s, d) = R′

i · ϕi + ϵ(|RoMi|, s, d)

where ϵ(|RoMi|, s, d) ≪ ϵ(rM , rJ , s, d,m).

III. HARDWARE PERFORMANCE TESTS

A. Reliability and Robustness
To evaluate the ORCA hand’s reliability and robustness in

long-duration tasks, we conduct an experiment in which we
actuate the hand’s joints continuously for 2.5 hours (Fig. 1C).
We attach a plush animal to the palm of the hand and have
it grasp it with all fingers every four seconds. This setup,
using a compliant object, is similar to the repeatability test
performed by [16] and allows us to assess behavior under
increased stress over a greater range of motion. Moreover,
to test the wrist joint’s durability, we flex and extend the wrist
to 40 degrees at one-fourth of the finger frequency, so every
16 seconds. The hand reliably performs the same grasping
movement for all 2,250 grasping cycles without breaking,
motor shutdown, or excessive tendon slack buildup. In Fig.
4C, we display the maximum current in the motors actuating
the middle finger’s MCP and PIP joints for each grasping
cycle, as well as the maximum current of the wrist joint
motor for each wrist extension-flexion cycle. The current
used by each motor provides an estimate of how much
external torque and friction must be overcome for a given
joint angle change. The fact that the maximum current for
each cycle remains roughly the same over the 2.5 hours
of uninterrupted joint movement demonstrates the hand’s
robustness, the high repeatability of joint movements, and
its capacity for long-duration operation. The fans on the side
of the hand’s tower prevent the motors from overheating (Fig.
4C), allowing the hand to function almost indefinitely.
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Fig. 4: (A) Comparison of joint responses to sine wave signals at 2 Hz and
5 Hz for the ORCA and LEAP hands: Despite the tendon-driven design, the
ORCA hand achieves similar accuracy and latency as the LEAP hand. (B)
Experimental setup to benchmark accuracy and latency of ORCA and LEAP
hand actuation responses: AprilTags are recorded with a camera and used
to infer the ground truth joint angles, which are then synchronized with
the commanded angles. (C) Reliability test: Uninterrupted and consistent
object grasping (2200+ cycles) and wrist motion (550+ cycles) for 2.5 hours
without any breakdown, motor overheating, or performance degradation.

B. Accuracy and Latency

Accurate control of joint motion is crucial for reliable
performance across any dexterous manipulation task. Ad-
ditionally, excessive latency between action commands and
their execution in the real world can severely hinder the
implementation of closed-loop behaviors. Incorporating la-
tency into the hand’s model for training in simulation can be
helpful to bridge the sim2real gap. To further demonstrate
the reliability of the ORCA hand, we, therefore, benchmark
the accuracy and latency with which the hand’s joints can
follow diverse action commands. We propose the following
experimental setup to benchmark the accuracy and latency
of robotic hands:

By attaching distinct AprilTags along one finger and
measuring their relative orientations to each other, each joint
angle on the finger can be calculated with relatively low
error (σ = 0.08◦ for our experimental setup). We place three
tag36h11 AprilTags across the MCP and PIP joints of the
ORCA hand’s index finger and align them in a single plane
(Fig. 4B). We then position a RealSense D435i camera in
front of the AprilTags, using a custom script to ensure that
the camera faces the tags at an angle of 90◦ ± 5◦ for more
precise angle measurements. We record image frames at 60
fps and save them to a ROS2 bag file. Simultaneously, we
publish commanded angles that actuate the index finger’s
MCP and PIP joints in a sine wave pattern and log them
into the same ROS2 bag file. This allows us to synchronize
the commanded angles with the real angles obtained from the
image frames and evaluate the system’s latency and accuracy
offline.

We compare the accuracy and latency of the ORCA hand
with the LEAP [16] hand to benchmark our system’s tendon-
driven dynamics against the dynamics of a direct-driven

robot hand (Fig. 4A). We actuate the MCP and PIP joints
of both hands’ index fingers with 2 Hz and 5 Hz sine wave
patterns. Before each test, we leverage the auto-calibration
mechanism of the ORCA hand to account for any changes
in tendon length or slack that might have accumulated
beforehand. We demonstrate that, through auto-calibration,
the finger joints of the ORCA hand accurately follow the
commanded sine input. In fact, we achieve similar accuracy
to the LEAP hand while being far less bulky thanks to our
tendon-driven actuation design. Additionally, we observe that
the ORCA hand’s joints rotate more smoothly than those of
the LEAP hand, which exhibit more jerks, presumably due to
the cables and possibly increased inertia interfering with the
LEAP hand’s finger joint motion. Both hands exhibit average
latencies of less than 0.2 seconds, most of which comes from
the software process. However, slack in the ORCA hand may
introduce additional latency, which is why retensioning the
spools periodically is important for robust performance.

One limitation of our benchmarking experiment is that
we cannot evaluate the accuracy and latency of the hands
for faster movements, as the AprilTags can not be tracked
at sine wave frequencies below 2 Hz or for step signals due
to motion blur at 60 fps. Recording the finger joints with a
ROS2-compatible camera capable of 240 fps could enable
more thorough system identification in the future.

C. Reinforcement Learning

Reinforcement learning is commonly used to learn dex-
terous tasks that are challenging to demonstrate or require
fine motor control, such as in-hand object reorientation [26].
A key challenge in applying RL to dexterous manipulation
tasks is that policies learned in simulation often perform
poorly when transferred to the real robotic hand. We use the
IsaacGymEnvs wrapper from [18] to train 4096 ORCA hand
models in parallel with an advantage actor-critic architecture
to learn in-hand ball reorientation. We demonstrate that after
1 hour of training with domain randomization, we can deploy
a robust policy on the physical ORCA hand (Fig. 6B), that
can successfully reorient a tennis ball along a given rotation
axis.

D. Imitation Learning

Imitation learning has become another predominant ap-
proach in the manipulation community, as it enables learning
tasks from a set of demonstrations without requiring task-
specific rewards or simulation environments. Various archi-
tectures have been proposed to extract meaningful represen-
tations of observations and map them to the correct actions
[27]–[29]. However, the application of imitation learning to
dexterous platforms presents additional challenges mainly
due to their higher-dimensional action spaces [30], [31].

To demonstrate autonomous task execution with the Orca
Hand, we employed the state-of-the-art architecture from
[27]. Our setup consists of the hand mounted on a Franka
Panda robotic arm, equipped with two external cameras and
one wrist-mounted camera.



Demonstrations were collected using motion capture
gloves [9], which provided absolute wrist tracking and finger
pose estimation. We retargeted these demonstrations into
the robot’s state space using an energy-based minimization
objective, similar to [32]. The wrist pose was used to control
the robotic arm in Cartesian end-effector space. This teleop-
eration method allowed us to showcase the versatility of the
hand across a wide range of tasks (Fig. 2) and facilitated the
rapid and intuitive collection of demonstrations, even from
non-trained operators.

The policy takes as input three camera images along
with proprioceptive data from both the robotic arm’s end-
effector and the hand. The output consists of an action chunk
predicting future actions.

Over approximately 2h30m, 214 video samples were col-
lected for training the policy on an NVIDIA GeForce RTX
4090 GPU for 500 epochs, which took approximately 4h.

For the proposed task, we conducted ablation studies on
image preprocessing. Specifically, we compared three policy
variations: (1) a baseline policy trained on raw RGB inputs,
(2) a policy incorporating segmentation of the cube’s color,
and (3) a hybrid approach trained on both datasets.

For a comprehensive description of the network and color
masking parameters, please refer to the appendix.

E. Tactile Sensing

To determine the AT (absolute threshold) of the tactile
sensors, a controlled orthogonal force was applied to the
front surface of a fingertip using a cylindrical indenter with
a diameter of 2cm and a flat contact surface. The applied
force was varied by placing calibrated weights on top of
the indenter. Registered touch was classified as any output
reading above 0.01V on the respective analog input on the
Arduino Nano Every. Despite the used FSR (Force Sensing
Resistor) sensors being rated for a minimum trigger force of
0.29N , the fingertip was capable of registering forces as low
as 0.05N with perfect accuracy over 10 cycles. It is unknown
if this is due to a lower than rated minimum trigger force of
the commercial FSR sensors, or if the silicone skin had an
unintentional pre-loading effect on the sensor. However, wear
and tear in the silicone skin is able to drastically affect the AT
of the sensors. While the sensor mounted on the ring finger
of the hand showed no degradation after thousands of grasp
cycles as part of the experiments outlined in section III-A,
the AT for the sensor mounted on the pinkie finger increased
to 6.38N due to degradation of the silicone skin creating
an air gap between the silicone skin and the mounted FSR
sensor. Furthermore, after around 4500 to 7000 grasp cycles,
the thin copper wires connecting the sensors to the external
electronics snapped on the thumb, index, and middle finger.
The snapping points occurred at different heights but were
all concentrated in the area of the MCP and ABD joints.

IV. ADDITIONAL RESULTS AND DISCUSSION

In this section, we show the results of both human tele-
operation and imitation learning with the ORCA hand and
discuss additional hardware-related findings.

Exp Setup

ORCA 
Hand

Sliding Surface

Franka Panda

Wrist 
Camera

Random Cube Position

External 
Cameras

Fig. 5: Experimental setup for repeated pick & place: The cardboard serves
as a fence, preventing the cube from rolling out of the testing area and
enabling uninterrupted, long-duration policy deployment.

A. Teleoperation - Dexterous Manipulation

The dexterity and stability of the ORCA hand was success-
fully evaluated by picking up and interacting with a variety
of objects:

• Stacking of 3 small and large cubes (same as for IL).
The cubes were first placed singularly on the table.

• Grabbing a plush toy (about the size of 3 large cubes)
lying on the table.

• Grabbing a tennis ball lying on the table
• Twisting open the cap of a Nutella jar (�8 cm). The jar

itself is screwed on.
• Spinning a fidget spinner for 2 s. The fidget spinner

is placed on a finger by hand, but the grasping and
spinning is done purely by teleoperation.

• Picking up a pen and writing "Hello" on a fastened piece
of paper (font size ∼200).

• Picking up a piece of paper lying on a fastened box.
• Picking up a cup and pouring its contents (50ml water)

into another cup.

B. Imitation Learning - Repeated Pick & Place

To highlight the reliability of both the hardware platform
and the trained IL policy, we designed a continuous pick-
and-place evaluation task. The robotic hand is required to
pick up a cube (6 cm side length) from a table and place
it onto a sliding surface, which then causes the cube to fall
back onto a random location on the table (Fig. 5, 6A).

To evaluate different policies, we collected the ratio of
failure positions to success positions (regarding picking up
the cube) within a testing area for 60 iterations (10 per sub-
area), as shown in Fig. 7. The most successful policy, using
only masked images of the cube, is deployed for 7h 17min
(approx. 2’000 grasping cycles) with no human intervention
on the ORCA hand’s hardware and minimal intervention
in aiding in the pick-and-place task (Fig. 1B). The policy
has consistent output over the entire duration of the test,
showcasing the hand’s durability in its lack of tendon slack
or tendon rupture.
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Fig. 6: (A) Prolonged imitation learning experiments over several hours. Walls and a sliding surface allow for self-resetting of the experiment. (B) Policies
built in simulation are deployed zero-shot to the real world due to the ORCA hand’s low joint errors.

For extended videos and time-lapses of the reliability test,
please refer to the ORCA project website.

C. Tactile Sensing

While integrated tactile sensing provides a cost-effective
and low barrier-of-entry approach to providing tactile feed-
back at the fingertips, the current design still shows a variety
of limitations regarding reliability over thousands of grasp
cycles. These limitations are namely the degradation of the
silicone skin that is vital to reliably transmit the contact
forces to the sensors (occurrence in 2 fingertips after approx.
2000 to 4000 grasp cycles) as well as the snapping of the
thin copper wires used for signal transmission (occurrence in
3 fingertips after approx. 4500 to 7000 grasp cycles). Both
of these limitations will be addressed in future work to allow
for reliable tactile sensing integration into autonomous tasks.

D. Ease of Assembly

The ORCA hand is designed to be easily assembled and
repaired. Given all the necessary mechanical parts, it takes
one person less than 8 hours to assemble one entire ORCA
hand. A detailed step-by-step instruction on how to assemble
and repair the hand will be made available on the project
website.
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Area 3 80% 100% 100%
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Area 5 60% 100% 80%
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Fig. 7: Testing area with respective policy success rates (% out of 10)

V. CONCLUSION

The ORCA hand offers an accessible solution for advanc-
ing robotic manipulation, and we hope to have laid the foun-
dation for real-world tasks and cutting-edge manipulation
research. A great deal of work has gone into making this
human-like, compliant hand as robust and reliable as possible
while remaining versatile, easy to control, and cost-effective.

Nevertheless, our study has limitations that suggest direc-
tions for future research. Prolonged use of the ORCA hand
necessitates manual re-tensioning to sustain optimal perfor-
mance. To address this, we aim to develop a re-tensioning
mechanism that autonomously reduces tendon slack without
the need of human intervention. This advancement could
enable even longer operation times, potentially accelerat-
ing real-world RL applications for dexterous manipulation
research. Future work of our hand may also include full
integration of the sensors into the learning pipeline, as well
as more advanced deep learning algorithms to learn complex
interactions with the environment more effectively.
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